Publication list

For more details (abstracts and images) click here.
Google Scholar profile

2018

(58.) Enhanced Annihilation Electrochemiluminescence by Nanofluidic Confinement, H. Al-Kutubi, S. Voci, L. Rassaei, N. Sojic and K. Mathwig, Chem. Sci., published online. [link]

(57.) Electrochemical sensing with single nanoskived gold nanowires bisecting a microchannel, P. E. Oomen, Y. Zhang, R. C. Chiechi, E. Verpoorte and K. Mathwig, Lab Chip 18 (2018) 2913. [link, pdf]

(56.) Potential-controlled adsorption, separation, and detection of redox species in nanofluidic devices, J. Cui, K. Mathwig, D. Mampallil and S. G. Lemay, Anal. Chem 90 (2018) 7127. [link, pdf]

(55.) Nanofluidic device, fluidic system and method for performing a test, J. C. Hohlbein and K. Mathwig, International Patent Application, WO2018060263. [link, pdf]

(54.) Cationic diodes by hot-pressing of Fumasep FKS-30 ionomer film onto a microhole in polyethylene terephthalate (PET), L. Tshwenya, O. Arotiba, B. R. Putra, E. Madrid, K. Mathwig and F. Marken, J. Electroanal. Chem. 815 (2018) 114. [link, pdf]

2017

(53.) An automated modular microsystem for enzymatic digestion with gut-on-a-chip applications, P. de Haan, M. A. Ianovska, K. Mathwig, H. Bouwmeester and E. Verpoorte, MicroTAS Proceedings 21 (2017) 1593. [link, pdf]

(52.) Nano- and microgap electrochemical transducers: Novel benchtop fabrication techniques and electrical migration effects, F. Marken and K. Mathwig, Curr. Opin. Electrochem. 7 (2018) 15. [link, pdf]

(51.) Simple nanofluidic devices for high-throughput, non-equilibrium studies at the single-molecule level, C. Fijen, M. Fontana, S. G. Lemay, K. Mathwig and J. Hohlbein, bioRxiv preprint (2017) 20179. [link]

(50.) Ionic Transport in Microhole Fluidic Diodes Based on Asymmetric Ionomer Film Deposits, K. Mathwig, B. D. B. Aaronson and F. Marken, ChemElectroChem 8 (2018) 897. [link, pdf]

(49.) A Nanofluidic Mixing Device for High-Throughput Fluorescence Sensing of Single Molecules, K. Mathwig, C. Fijen, M. Fontana, S. G. Lemay and J. Hohlbein, Procedia Technol. 27 (2017) 141. [linkpdf]

(48.) Ionic Diode Characteristics at a Polymer of Intrinsic Microporosity (PIM) | Nafion “Heterojunction” Deposit on a Microhole Poly(ethylene-terephthalate) Substrate, B. R. Putra, B. D. B. Aaronson, E. Madrid, K. Mathwig, M. Carta, R. Malpass-Evans, N. B. McKeown and F. Marken, Electroanalysis 29 (2017) 2217. [link, pdf]

(47.) Electrochemiluminescence: Fundamentals to Applications, L. Rassaei, G. Xu, Z. Ding and K. Mathwig, ChemElectroChem 4 (2017) 1571. [link, pdf]

(46.) Electrochemical Amplification in Side-by-Side Attoliter Nanogap Transducers, H. R. Zafarani, K. Mathwig, E. J. R. Sudhölter and L. Rassaei, ACS Sensors 2 (2017) 724. [link, pdf]

(45.) A Cationic Diode Based on Asymmetric Nafion® Film Deposits, D. He, E. Madrid, B. D. B. Aaronson, L. Fan, J. Doughty, K. Mathwig, A. M. Bond, N. B. McKeown and F. Marken, ACS Appl. Mater. Interfaces 9 (2017) 11272. [link, pdf]

2016

(44.) Modulating Selectivity in Nanogap Sensors, H. R. Zafarani, K. Mathwig, S. G. Lemay, E. J. R. Sudhölter and L. Rassaei, ACS Sens. 1 (2016) 1439. [link, pdf]

(43.) Electrochemical Sensing with a Single Suspended Nanowire, P. E. Oomen, Y. Zhang, R. C. Chiechi, E. Verpoorte, and K. Mathwig, MicroTAS Proceedings 20 (2016) 102. [link, pdf]

(42.) Potential-Dependent Stochastic Amperometry of Multiferrocenylthiophenes in an Electrochemical Nanogap Transducer, K. Mathwig, H. R. Zafarani, J. M. Speck, S. Sarkar, H. Lang, S. G. Lemay, L. Rassaei, O. G. Schmidt, J. Phys. Chem. C 120 (2016) 23262. [link, pdf]

(41.) pH-Induced Reversal of Ionic Diode Polarity in 300 nm Thin Membranes Based on a Polymer of Intrinsic Microporosity, Y. Rong, Q. Song, K. Mathwig, E. Madrid, D. He, R. G. Niemann, P. J. Cameron, S. E.C. Dale, S. Bending, M. Carta, R. Malpass-Evans, N. B. McKeown, F. Marken, Electrochem. Comm. 69 (2016) 41. [link, pdf]

(40.) Electrofluorochromic systems: Molecules and materials exhibiting redox-switchable fluorescence, H. Al-Kutubi, H. R. Zafarani, L. Rassaei and K. Mathwig, Eur. Polym. J. 83 (2016) 478. [link, pdf]

(39.) Single-molecule electrochemistry in nanochannels: probing the time of first passage, S. Kang, A. F. Nieuwenhuis, K. Mathwig, D. Mampallil, Z. A. Kostiuchenko and Serge G. Lemay, Faraday Discuss. 193 (2016) 41. [link, pdf]

(38.) Bisecting Microfluidic Channels with Metallic Nanowires Fabricated by Nanoskiving, G. A. Kalkman, Y. Zhang, E. Monachino, K. Mathwig, M. E. Kamminga, P. Pourhossein, P. E. Oomen, S. A. Stratmann, Z. Zhao, A. M. van Oijen, E. M. J. Verpoorte and R. C. Chiechi, ACS Nano 10 (2016) 2852. [link, pdf]

2015

(37.) Electrochemical redox cycling in a new nanogap sensor: Design and simulation, H. R. Zafarani, K. Mathwig, E. J. R. Sudhölter and L. Rassaei, J. Electroanal. Chem. 760 (2016) 42. [link, pdf]

(36.) Integrated Microfluidics of Electrochemical Nanogap Sensors, S. Sarkar, A. F. Nieuwenhuis, S. Kang, K. Mathwig and S. G. Lemay, MicroTAS Proceedings 19 (2015) 1522. [link, pdf]

(35.) Handling and Sensing of Single Enzyme Molecules: From Fluorescence Detection Towards Nanoscale Electrical Measurements, K. Mathwig, Q. Chi, S. G. Lemay and L. Rassaei, ChemPhysChem 17 (2016) 452. [link, pdf]

(34.) Challenges of Biomolecular Detection at the Nanoscale: Nanopores and Microelectrodes, K. Mathwig, T. Albrecht, E. D. Goluch and L. Rassaei, Anal. Chem. 87 (2015) 5470. [link, pdf]

(33.) Detection strategies for methylated and hypermethylated DNA, Z. Taleat, K. Mathwig, E. J. R. Sudhölter and L. Rassaei, Trends Anal. Chem. 66 (2015) 80. [link, pdf]

2014

(32.) Brownian motion in electrochemical nanodevices, K. J. Krause, K. Mathwig, B. Wolfrum and S. G. Lemay, Eur. Phys. J. Special Topics 223 (2014) 3156. [link, pdf]

(31.) Electrochemical Nanofluidic Assays in the Absence of Reference Electrode, S. Sarkar, K. Mathwig, S. Kang, A. F. Nieuwenhuis and S. G. Lemay, MicroTAS Proceedings 18 (2014) 2122. [link, pdf]

(30.) Redox Cycling Without Reference Electrode, S. Sarkar, K. Mathwig, S. Kang, A. F. Nieuwenhuis and S. G. Lemay, Analyst 139 (2014) 6052. [link, pdf]

(29.) Integrated Biodetection in a Nanofluidic Device, L. Rassaei, K. Mathwig, S. Kang, H. A. Heering and S. G. Lemay, ACS Nano 8 (2014) 8278. [link, pdf]

(28.) Nanoscale Methods for Single-Molecule Electrochemistry, K. Mathwig, T. J. Aartsma, G. W. Canters and S. G. Lemay, Annu. Rev. Anal. Chem. 7 (2014) 383. [link, pdf]

(27.) Noise Phenomena Caused by Reversible Adsorption in Nanoscale Electrochemical Devices, E. Kätelhön, K. J. Krause, K. Mathwig, S. G. Lemay and B. Wolfrum, ACS Nano 8 (2014) 4924. [link, pdf]

(26.) Reversible Adsorption of Outer-Sphere Redox Molecules at Pt Electrodes, D. Mampallil, K. Mathwig, S. Kang and S. G. Lemay, J. Phys. Chem. Lett. 5 (2014) 636. [link, pdf]

2013

(25.) Electrochemical Single-Molecule Detection in Aqueous Solution using Self-Aligned Nanogap Transducers, S. Kang, A. F. Nieuwenhuis, K. Mathwig, D. Mampallil and S. G. Lemay, ACS Nano 7 (2013) 10931. [link, pdf]

(24.) A Novel Parallel Nanomixer for High-Throughput Single-Molecule Fluorescence Detection, K. Mathwig, S. Schlautmann, S. G. Lemay and J. Hohlbein, MicroTAS Proceedings 17 (2013) 1385. [link, pdf]

(23.) Mass transport in electrochemical nanogap sensors, K. Mathwig and S. G. Lemay, Electrochim. Acta 112 (2013) 943. [link, pdf]

(22.) Redox couples with unequal diffusion coefficients: effect on redox cycling, D. Mampallil, K. Mathwig, S. Kang and S. G. Lemay, Anal. Chem. 85 (2013) 6053. [link, pdf]

(21.) Pushing the Limits of Electrical Detection of Ultralow Flows in Nanofluidic Channels, K. Mathwig and S. G. Lemay, Micromachines 4 (2013) 138. [link, pdf]

2012

(20.) Single-Molecule Electrochemistry: Present Status and Outlook, S. G. Lemay, S. Kang, K. Mathwig and P. S. Singh, Acc. Chem. Res. 46 (2013) 369. [link, pdf]

(19.) Stochasticity in Single-Molecule Nanoelectrochemistry: Origins, Consequences, and Solutions, P. S. Singh, E. Kätelhön, K. Mathwig, B. Wolfrum and S. G. Lemay, ACS Nano 6 (2012) 9662. [link, pdf]

(18.) Detection of Sub-Picoliter-per-Minute Flows by Electrochemical Autocorrelation Spectroscopy, K. Mathwig, D. Mampallil, S. Kang and S. G. Lemay, MicroTAS Proceedings 16 (2012) 28. [link, pdf]

(17.) Pushing the Limits of Electrical Detection of Ultralow Flows in Nanofluidic Channels, K. Mathwig, S. Kang, D. Mampallil and S. G. Lemay, MFHS Proceedings 1 (2012) 18. [link, pdf]

(16.) Electrical Cross-Correlation Spectroscopy: Measuring Picoliter-per-Minute Flows in Nanochannels, K. Mathwig, D. Mampallil, S. Kang and S. G. Lemay, Phys. Rev. Lett. 109 (2012) 118302. [link, pdf]

(15.) Hydrodynamic Voltammetry with Nanogap Electrodes, L. Rassaei*, K. Mathwig*, E. D. Goluch and S. G. Lemay, J. Phys. Chem. C 116 (2012) 10913. (*equal contribution) [link, pdf]
Correction: J. Phys. Chem. C 120  (2016) 3086 [link].

(14.) Response time of nanofluidic electrochemical sensors, S. Kang, K. Mathwig and
S. G. Lemay, Lab Chip 12 (2012) 1262. [link, pdf]

2011

(13.) Characterization of Cell Phenotype using Dynamic Vision Sensor and Impedance Spectroscopy, N. Haandbæk, K. Mathwig, R. Streichan, N. Goedecke, S. C. Bürgel, F. Heer and A. Hierlemann, MicroTAS Proceedings 15 (2011) 1236. [link, pdf]

(12.) Bandwidth Compensation for High Resolution Impedance Spectroscopy, N. Haandbæk, K. Mathwig, R. Streichan, N. Goedecke, S. C. Bürgel, F. Heer and A. Hierlemann, Procedia Eng. 25 (2011) 1209. [link, pdf]

(11.) Particle transport in asymmetrically modulated pores, K. Mathwig, F. Müller and U. Gösele, New J. Phys. 13 (2011) 033038. [link, pdf]

(10.) Bias-assisted KOH etching of macroporous silicon membranes, K. Mathwig, M. Geilhufe, F. Müller and U. Gösele, J. Micromech. Microeng. 21 (2011) 035015. [link, pdf]

2010

(9.) Preparation and Elastic Properties of Helical Nanotubes Obtained by Atomic Layer Deposition with Carbon Nanocoils as Templates, Y. Qin, Y. Kim, L. Zhang, S.-M. Lee, R. B. Yang, A. Pan, K. Mathwig, M. Alexe, U. Gösele and M. Knez, small 6 (2010) 910. [link, pdf]

(8.) Cellular interactions of biodegradable nanorod arrays prepared by nondestructive extraction from nanoporous alumina, S. Grimm, J. Martín, G. Rodriguez, M. Fernández-Gutierrez, K. Mathwig, R. B. Wehrspohn, U. Gösele, J. San Roman, C. Mijangos and M. Steinhart, J. Mater. Chem. 20 (2010) 3171. [link, pdf]

2009

(7.) Transport of particles in asymmetrically modulated pores (in German), K. Mathwig,
Ph.D. thesis, University Halle-Wittenberg (2009). [link, pdf]

(6.) Characterization of microrod arrays by image analysis, R. Hillebrand, S. Grimm, R. Giesa, H.-W. Schmidt, K. Mathwig, U. Gösele and M. Steinhart, Appl. Phys. Lett. 94 (2009) 164103. [link, pdf]

(5.) Polymer microrod arrays prepared by non-destructive molding evaluated by real space image analysis, R. Hillebrand, S. Grimm, R. Giesa, H.-W. Schmidt, K. Mathwig, U. Gösele and M. Steinhart, Polymer Preprints 50 (2009) 365. [pdf]

2007

(4.) DFB Lasers With Deeply Etched Vertical Grating Based on InAs–InP Quantum-Dash Structures, K. Mathwig, W. Kaiser, A. Somers, J. P. Reithmaier, A. Forchel, K. Ohira, S. M. Ullah and S. Arai, IEEE Photon. Tech. Lett. 19 (2007) 264. [link, pdf]

2005

(3.) Single-mode InP-based quantum dot lasers: Fabrication, static and dynamic properties (in German), K. Mathwig, Diploma thesis, University of Würzburg (2005). [pdf]

(2.) Laterally coupled DFB lasers based on InAs/InP-QDash structures for broadband applications, W. Kaiser, K. Mathwig, S. Deubert, A. Somers, A. Forchel, J. P. Reithmaier, O.Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili, G, Eisenstein and M. Legge, 31st ECOC Proceedings 3 (2005) 559. [link, pdf]

(1.) DFB Lasers With Deeply Etched Vertical Grating Based on InAs–InP Quantum-Dash Structures, W. Kaiser, K. Mathwig, S. Deubert, J. P. Reithmaier, A. Forchel, O. Parillaud, M. Krakowski, D. Hadass, V. Mikhelashvili and G. Eisenstein, Electron. Lett. 41 (2005), 808. [link, pdf]

Advertisements